Chapter 1 Introduction of EV-FT-12 BMS

1.1 Product Structure

With the distributed two-level management system, EV-FT-12 electric vehicle BMS (hereinafter called EV-FT-12 system) is composed of Battery cluster-management unit (BCU) and multiple Battery monitor unit (BMU), display screen (LCD), insulation detection module (LDM), heavy-current control system (HCS), current sensor (CS) and wiring harness.

图 1-1 产品结构

1.2 System Configuration

Figure 1-2 System Configuration

1.3 Brief Introduction of Function

In EV-FT-12 system, BCU module carries out real-time communications with multiple BMU modules and LDM (insulation detection module) through CAN bus to gain system parameters, such as single cell voltage, box temperature and insulation

resistance and so on, collects charging and discharging current through current sensor, calculates SOC dynamically and displays related data through touch screen. BCU manages system after gaining comprehensive information of battery pack through calculation and analysis, respectively interacts with ECU, motor controller and charger and so on intelligently through independently CAN bus and can realize the secondary protection of charging and discharging through relay control to meet diversified safety control demands of customers, ensuring stable and effective operation of system.

Туре	Specification	Remarks
Voltage collecti range	on 0~5V	
Voltage collecti accuracy	S T	
Accuracy of tota voltage	≤0.2%	
Current collection	≤±1%	500A current sensor
Error of SO estimation	C ≤5%	
Temperature collect accuracy	ion ≤±1 °C	-30~75°C
Temperature collec range	ion -40~125°C	
Balance current	≥1A (normal temperature)	2 channels of balance can be switched on a the same time
Power consumptior BMU operation	SIVV	One BMU module,均衡不开启
Power consumptior BCU operation	i of ≤2.8W	
Working input volta	0	
System operating temperature	-30∼75°C	
Storage temperature	-40~85°C	
Weight	BCU:480±5g BN	IU:640±5g One module
Charging control mode	CAN communication active/passive output	Depend on actual condition
Discharging cont mode	rol CAN communicatic active/passive output	ⁿ Depend on actual conditions

1.4 Technical Specifications

1.5 Battery cluster-management unit (BCU)

BCU function

- SOC estimation: use Joint EKF algorithm to estimate SOC of battery pack dynamically
- Current detection: carry out real-time detection of current in charging and discharging circuits through Hall current sensor.
- Communication function: externally installed 3 CAN interfaces, which can be used to communicate with BMU, complete vehicle controller and charger and so on to exchange voltage, temperature, fault code, control command and other information.
- Alarm and protection: when there is fault as over-charge, over-discharge and so on, BCU can perform the corresponding alarm and protection according to fault status and display it on LCD screen.

- System expanding: BCU supports multiple channels of active/passive node output and can realize two-level control management through CAN communication and relay to ensure effective isolation of strong and weak current and meet diversified safety control demands of customers.
- Data storage: support 8G data storage capacity and can record all performance parameters of long-term operation of power battery pack and dispatching and fault events of battery module.
- System self-check: the system checks itself and BMU working status after power on to ensure normal working of system.
- Remote management: BCU is equipped with wireless communication interface, which can realize four-remote function through external DTU module.
- System upgrade: program downloading interface is installed externally, which can be used to upgrade system within 30 seconds.

Parameters of BCU module

ltem	Performance						
Working voltage	DC 12V/24V						
Current detection ran	g g 500A (Optional)						
Current detection accuracy	≤±1%						
Error of SOC estimation	≤5%						
Display	Total voltage, total current, maximum and minimum voltages and serial numbers, voltage of single battery, box temperature, charging and discharging status, over-charge alarm prompt, under-charge alarm prompt, over-discharge alarm prompt, over-temberature alarm prompt and insulativity alarm prompt, etc.						
Alarm	Grade I alarm: prompted alarm information appears on display screen and no control measures are taken: ● Single cell voltage ≤3.0V; ● 100Ω/V≤ insulativity ≤500Ω/V Grade II alarm: prompted alarm information appears on display screen and there bumming; disconnect charging and discharging circuits: ● Single cell voltage ≤2.5V or single cell voltage ≥3.9V; delay: 5-30S; ● Box temperature ≥75°C;						
Charging control mode	 Insulativity ≤100Ω/V Use CAN bus and relay to control: When the cell voltage of single battery ≥3.65V, carry out CAN communication with charger and the current value gradually decreases according to smooth curve. When the cell voltage of single battery ≥3.9V, disconnect charger output after 30S delay. When the cell voltage of single battery <3.4V, charger can be used again for continue charging. When the box temperature ≥75°C, charger is abnormal or charging circuit is disconnected. 						
Discharging control	 Use CAN and high-voltage relay to control: when cell voltage of single battery ≤3.0V, ,communicate with motor controller by CAN communication to reduce motor output power. When the cell voltage of single battery ≤2.5V, disconnect motor power output after 5~ 10S delay. When single core voltage > 2.6 V festival, the motor controller can continue to output power. When battery box temperature ≥75°C, disconnect discharging circuit.₀ 						

Note: *all protection parameters in table can be configured.

1.6 Battery monitor unit (BMU)

BMU function

BMU connects with battery pack through voltage detection wire, collects voltage of 16 strings of battery cell at most and can equalize battery according to battery single cell voltage.

When the voltage of some single cell battery in battery box reaches to 2.8V and battery voltage difference is between 10mv-800mv, the balance function will start automatically. Each battery detection unit can switch on 2 channels of balance at the same time at most. BMU collects box module temperature through 4 temperature sensors at most and can actively manage cooling and heating according to temperature status to ensure battery application capacity and prolong battery service life. The working power supply of BMU has to be provided by the external 12V (9V~18V self-adaption) or 24V (18V~36V self adaption) DC power source. BMU transmits the collected battery voltage, box temperature and other information to Battery cluster-management unit through CAN bus.

- Detection of single cell voltage: realize the real-time detection of each single cell voltage through isolated collection of series single cell voltage.
- Temperature detection: put 1~4 temperature sensors in box of battery module to realize the real-time detection of box temperature.
- CAN communication: transmit the voltage, box temperature and other information of each single cell in battery pack to BCU through CAN bus.
- Balance function: balance management can be performed to battery cell according to agreed balance management control strategy to improve the consistency of single battery cell and application performance of battery pack.
- Heat management: BMU can manage the cooling and heating status of battery actively according to battery box temperature to ensure battery application capacity and prolong battery service life.

System upgrade: program downloading interface is installed externally, which can be used to upgrade system within 30 seconds.

Item	Parameter	Remarks
Maximum quantity of collection string	16 strings	
Working voltage	DC9V~32V	
Voltage collection range	0~5V	
Collection accuracy of single cell voltage	s ≤±5mV	
Temperature collection range	-40~125°C	
Temperature detection accuracy	≤±1 °C	-30∼75°C
Communication interface	CAN	
Voltage sampling period	200ms	16S
Cooling/heating current	≤1.2A	Peak value 5A

Parameters of BMU module

1.7 Insulation Detection Module (LDM)

LDM function

LDM is used to detect whether the battery pack has electricity leakage on vehicle body. LDM receives the command from BCU

through serial bus and transmits the detected data information to BCU, which then will deliver LDM status to display screen.

Method to judge whether the battery leaks electricity onto vehicle body: respectively detect whether the insulativity between

positive/negative pole of vehicle-mounted battery and body shell is more than 100 $\Omega/V.$

Insulativity	System Status	Display Screen
Insulativity≥100Ω/V	Normal system display	(No icon)
Total pressure testing	System alarm I	Bus abnormal
abnormalities		
Insulativity≤100Ω/V	System alarm II	Display insulation leaka
		(Red)system cuts off circuit.

1.8 Heavy-current Control System (HCS)

Heavy-current control system includes heavy-current control module, charging and discharging control circuits and pre-charge circuit, etc.

- HCS function
 - Charge and discharge control: charging/discharging of battery is controlled through switching on/off high-voltage relay to prevent over-charge and over-discharge of battery; besides, the function of relay contact detection is also equipped to prevent sticky point of relay in circuit.
 - Pre-charge circuit: before switching on the discharging high-voltage relay of main circuit, it is necessary to switch on the pre-charge circuit firstly to charge capacitance. Then, switch on the high-voltage relay of main circuit when the voltage at both terminals of capacitance has reached to setting threshold value to ensure the reliability of high-voltage relay of main circuit.
 - CAN and RS485 communication: use CAN or RS485 bus to communicate with BCU, upload relay status and other information and receive the control command from BCU.

Table of Relay Model Selection

Item	Code	Detailed Parameters
	01	EV200AAANA
Delay Medal	02	400V/10A
Relay Model	03	400V/80A
	04	400V/120A

ltem	Code	Detailed Parameters
	00	50W
Power	01	75W
Model	02	100W
	04	300W
	01	50Ω
Resistan	ce 02	75Ω
Model	03	100Ω
	07	240Ω

■ Model Selection Table of Power and Resistance of Heavy-current Module

1.9 Current Sensor (CS)

CS function

The current of this system is detected with Hall open-loop current sensor with optional range 50A \sim 1000A.

Item	Code	Detailed Parameters
	01	50A
	02	100A
Currer	it 04	200A
Туре	05	300A
	07	500A
	10	1000A

Model Selection Table of CS

1.10 Display Screen (LCD)

LDM function

The display screen is human-machine interface for displaying system operation status. All its models are designed according to industrial standard and suitable for applying in various conditions. The display interface of LCD can display all operation parameters and faults of system.

Status description of LCD

The operation indicator of display screen includes three ones: power supply (PWR), running (RUN) and communication (COM). When the display screen is powered on, the power indicator (PWR) is normally on; if the running indicator (RUN) is normally on in yellow, it stands for normal running of display screen; if the running indicator (RUN) is not on, it means that the display screen has fault; when the display screen has connected with BMS, the communication indicator (COM) flashes in yellow.

Figure 1-3 Running Status Indicator

• The following table shows the display status of three LED indicators under various conditions:

Equipr	nent Status	Green LED (P	WR) Yellow LED (R	UN) Yellow LED (CΦM
No power supply		0	0	0
Power on, no	3.5" scree	en •	•	•
communicatio	ⁿ 5.7" screen	•	•	0
Communicate with connecte equipment		d •	•	*
	0	LED off • I	ED on X	Flash

Display description of LCD

The integrated interface information of display screen is as shown in the figure below:

Figure 1-4 Figure of LCD Display Interface

Model Selection Table of LCD

Item	Code	e Detailed Parameters					
LCD Mod	01 ol	Display screen	3.5"				
	02	Display screen	5.7"				

Chapter 2 Installation of System

2.1 Installation Dimension and Weight of Product

Product Type		Overa	all and In	stallation	Dimensi	ions (unit	:: mm)	We	eight
Floduct Type	w	Н	D	W1	H1	D1	d	(KG)	
BCU	165	106	43	100	50			M4 0	.64

BMU	124	91	40	100	40	M4	0.48	
LDM	165	120.5	25	105.5	85	15	4.5	1.05
HCS	260	240	100	130	225	26	6	_
	96	81	47	90	75	5	4	0.186
LCD								
	177	7 140	40	160.6	130.5	6	4	0.5

Note: W, H and D are dimensions of external structure; W1, H1 and D1 are installation dimensions of internal structure; d is width of mounting hole.

2.2 chematic Diagram of Overall Dimensions

Battery cluster-management unit (BCU)

- 图 2-1 BCU Overall Dimension
- Battery monitor unit (BMU)

8 2-2 BMU Dimension

■ Insulation Detection Module (LDM)

图 2-3□LDM Dimension

Display Screen (LCD)

 \blacksquare 2-4 Overall Dimension of 5.7" LCD

Current Sensor(CS)

Heavy-current Control Box

Figure 2-6 Overall Dimension of Heavy-current Control Box

2.3 Interface Description

BCU interface

Figure 2-7 Front Interface of BCU

Communication and switching output interface

Fig 2-8 Back Interface of BCU

BMU interface

Interface for voltage detection Interface for temperature detection

Interface for relay, ower supply

and CAN communication

Figure 2-9 Front Interface of BMU

LDM interface

Figure 2-10 Front Interface of LDM

-20-

Figure 2-11 Back Interface of LDM

■ 5.7" LDC interface

CS interface

-21-

2.4 Wiring Diagram of System

Figure 2-14 Schematic Diagram of Installation

Note: * products of different models may have some difference in functions and settings. The installation method of

2.5 Wiring Description of BMU

- Connection of voltage detection wiring harness (take 16 strings for example)
 - ♦ B1+ connects with positive pole (red line) of first battery;
 - B1-~B15- connect with negative pole (black line) of each battery in series successively;
 - B16- connects with negative pole (green line) of the last battery.

Negative pole of battery module

Figure 2-15 Schematic Diagram of Connection between Voltage Detection Wiring Harness and Battery

Δ

Figure 2-16 Example Diagram of Connection between Voltage Detection Wiring Harness and Battery

Caution: the connection order of voltage detection wiring harness cannot be wrong. Otherwise, the voltage collection may be incorrect, equalizing circuit may be burnt out and battery may be damaged.

Fix temperature sensor onto battery pack

Figure 2-17 Example Diagram of Temperature Sensor Connection

Connect voltage detection cable harness and temperature detection cable to BMU

Figure 2-18 Example Diagram for Connection of Voltage Detection Cable Harness and Temperature Detection Cable

Connection of CAN Communication Cable

CAN communication cable is the communication medium between BMU and BCM. The system adopts 3-core shielding line to be communication cable. MOLEX12pin connector assembly and AMP 6PIN automobile connector (cellular type and pin type) are used for joint_o

The BMU farthest away from BCU connects to No. 2 line and others connect to No. 1 line.

Figure 2-19 Example Diagram for Connection of Communication cables among BMUs

Connect the BCU power line, red line to connect power positive, black line across the connect power

Figure 2-20 Example Diagram for Connection of BMU $_{\mbox{power line}}$ User manual of EV-FT-12 BMS

2.6 Wiring Description of BCU

Connect communication cable s between BCU and BMU

Connect current sensor

The current sensor is strung onto the circuit cable of output positive/negative pole of battery pack and has two kinds of wiring modes, as shown in the figure below (pay attention to the arrow on current sensor).

Figure 2-22 Schematic Diagram for Connection of Current Sensor Installation Connection method 1 Connection method 2

Figure 2-22 Example Diagram for Connection of Current Sensor

• Connect the control cable of charge/discharge relay (red line connects with positive pole of relay coil and black one with negative pole of relay coil).

Figure 2-24 Example Diagram for Connection of Relay Control Cable

Connect CAN communication cables of charger and complete vehicle system/motor controller.
 (For 3-core shielding line: red is H, yellow is L and black is GND)

Figure 2-25 Example Diagram for Connection of CAN Communication Cable

Caution: 1. Confirm that the connection of "H" and "L" of CAN bus is correct. Otherwise, CAN bus cannot communicate with other devices.

2. Confirm that the matched resistance of CAN bus is correct. Otherwise, CAN bus cannot communicate with other

Connect the power supply cord of BCU (red line connects with positive pole of power supply and black one with negative pole).

Figure 2-26 Example Diagram for Connection of BCU Power Cord

2.7 Wiring Description of LDM

■ Connect communication cables between LDM and BCU_o

Figure 2-27 Example Diagram for Connection of Communication Cables between LDM and BCU

Connect LDM to the master positive pole and master negative pole of battery pack; and make LDM shell contact with vehicle body and keep well conducting between them (LDM shell grounded). Figure 2-27 Example Diagram for Connection of Communication Cables between LDM and battery positive and negative terminals

Caution: LDM shell must well contact with vehicle body. Otherwise, functions of LDM will be invalid!
Dangerous: it is necessary to wear insulation gloves when connecting positive/negative pole wire of detection.
Cherwise, electric shock may be caused!

2.8 Wiring Description of LCD

Wiring description of display screen

Figure 2-29 Example Diagram for Connection of LCD and BCU (take 5.7" one for example)

- Caution: 1. the communication cable interface (DB9 connector) of LCD connects to COM1 communication interface of LCD. If it is connected to COM2 interface, the LCD communication will be interrupted!
 - 2. The connection of positive and negative poles of LCD power cannot be reversed. Otherwise, LCD will be burnt out!
 - 3. LCD is powered by DC24V. The positive pole connects with 24V+ and negative one with 24V-!

2.9 Installation Conditions and Requirements

Avoid installing the system under the condition with oil mist, metallic dust and much dust.

- Avoid installing the system under the condition with harmful gas and fluid or corrosive, flammable and explosive gas.
- Reserve appropriate installation dimensions.
- Cable installation shall be kept away from sharp objects.
- Try best to keep away from conditions with strong electromagnetic interference.
- Parameters of all parts related to his system shall be confirmed by our company.

Chapter 3 Wiring of System

3.1 Type of Cable

N	o. Name	Specification	Remarks
1	Voltage detection cable	0.5 high temperature wire : one end is MOLEX28PIN conr assembly; the other end is 1.5-8 cold pressed	ector Size of cold pressed terminal is determined according to the actual demand of customer.
	Temperature	terminal. 2x0.5 high temperature wire: one end is MOLEX28PIN connecto	r
2	detection cable	assembly; the other end is tempera sensor. 2x0.5 power line:	ture
	Heating relay cont	rol one end is MOLEX16PIN conr assembly; the other end is null.	lector
	Refrigeration relay control line BMU power line 1	assembly; the other end is null.	lector
3		2x0.5 power line: one end is MOLEX16PIN connecto assembly; the other end is3PINAMP pin-type connector assembly.	r Power supply into BMU
	Communication cable among modules	3x0.5 shielding line: one end is MOLEX16PIN conr assembly; the other end is AMP3PIN connect assembly (cellular type and pin type).	
4	BMU power line 2	6x1.0 high temperature wire +2x0.5 power line one end is 30A connection assembly; the other end is AMP2PIN cellular connector assembly.	AMP cellular connector assembly. is equ to the number of BMU quantity. Main line connect with several AMP2PIN cellular connector.
5	Power line	2x0.5 power line : one end is MOLEX12PIN conn assembly; the other end is null.	ector

-		
	Discharge relay cable	2x0.5 power line: one end is MOLEX12PIN connector assembly; the other end is null.
	Input signal cable	2x0.5 power line: one end is MOLEX12PIN connector assembly; the other end is null.
	CAN cable of who car	3*0.5 shielding line: e one end is MOLEX20PIN connector assembly; the other end is null.
	Charge CAN cable	3*0.5 shielding line: one end is MOLEX20PIN connector assembly; the other end is null.
	Charge relay cable	2x0.5 power line: one end is MOLEX20PIN connector assembly; the other end is null.
6	Pre-charge relay cable	2x0.5 power line: one end is MOLEX20PIN connector assembly; the other end is null.
	Charge switching signal cable	2x0.5 power line: one end is MOLEX20PIN connector assembly; the other end is null.
	Discharge switchi signal cable	2x0.5 power line: ng one end is MOLEX20PIN conrector assembly; the other end is null.
7	Connecting wire o	4x0.5 shielding line: f one end is MOLEX8PIN connector assembly; the other end is 5569 (2x2) cellular terminal.
,	USB communicati cable	4x0.5 shielding line: on one end is MOLEX8PIN connector assembly; the other end is USB interface.
8	Communication cable between BCI and BMU	3x0.5 shielding line: one end is MOLEX28PIN connector J assembly; the other end is AMP3PIN cellular connector assembly.

Screen communication cable	5x0.3 shielding line: one end is MOLEX28PIN connector assembly; the other end is DB9 terminal (cellular) and 2PIN plug.
LDM communicati cable	3x0.5 shielding line and 2*0.5 power cord: on one end is MOLEX28PIN connector assembly; the other end is AMP6PIN pin-type connector assembly.

Note: *1. the cable length is determined through consultation between customer and our company.

*2. The type of charge and discharge cables is determined according to requirement of customers.

*3. For wiring mode, please refer to instructions for system installation.

- *4. If special cables are needed, please contact technical support center of our company.
- *5. In the above listed cable type, based on standard system, according to the demand of customer and system application

different occasions, will different with objects.

3.2 Diagram of Cables

Following pictures show common cables produced by our company :

Diagram	Name	Application	Interface
	Voltage detection cable		
		Detect ure temperature able informatior battery	
	Heating re control lir		rnal heating

Refrigeration Control external relay control refrigeration line equipment
BMU power Power input line 1 BMU
Communicatio Communication ரிஞீழித்among _{BM} றுong all
Connection BMU power external power line 2 supply and BMU
Power cordSupply power (red "+", black for BCU "-")
Connect with rela ^D ischarge of diggtfalgeb es relay and BCU
ମୁଅନାନ sign ଶ୍ରାgual ကျားရှိ (ସ୍ଥାବ)
Connect with Complete motor cable vehicle CAN controller/con ete vehicle controller

Charge C. cable	AN Connect w charger	ith
Charge re cable	Connect w lay control cab of charge relay and BCU	
Pre-charg relay cable	Connect w ge control cab of pre-charge relay and BCU	
Charge switching cable	to charger	
Discharg switching cable		
Current senso cable	Connect w BCU and current sen	W
USB communica cable		d data
	3CU Communic ommunication c BMU and BC	ables be

Screen communica cable	between BC	:u 🧊 🎢
Insulation communication cable	Communica between B and LDM, a power cord	cu 🦳

3.3 Cable Quantity

In the following table, a set of EV-FT-12 system is taken for example to explain cable quantity required by product. One of products takes one BCU and N (≤16) BMUs for example to explain the quantity of each cable, as shown in the table below.

Name	Qty.	Unit	Remarks
Voltage detection ca			Quantity of each set of voltage detect cable is equal to that c
Temperature detecti	on ^N	Set	There are 3 temperature sensors on each set of cable.
cable Heating relay contro	ol N	Set	Optional
line Refrigeration relay	N	Set	Optional
control line BMU power line 1	N	Set	BMU power input
Communication cab	le N	Set	Communication cables among BMUs
BMU power line 2	1	Set	Each system of BMU corresponding a connection of the external power source supply bus
Power line	1	Set	BCU power input
BMU and BCU	. 1	Set	
communication cab Connecting wire o	-	Pcs	
current sensor Screen communicati	on 1	Set	

cable			
Discharge switchin	g 1	Pcs	
cable	i	F Co	The corresponding discharge mode and harness corresponding
Discharge CAN cab	e 1	Pcs	to one cable are selected by customers.
Discharge relay cab	le 1	Pcs	
Charge relay cable	1	Pcs	The corresponding discharge mode and harness corresponding
Charge CAN cable	1	Pcs	
Charge switching cat	o le 1	Pcs	to one cable are selected by customers.
Pre-charge relay cab	le 1	Pcs	Optional
USB communicatio	n 1	Pcs	Optional
cable	1		
Input signal cable	1	Pcs	Optional
Insulation	1	Pcs	Optional
communication cab	le		

Chapter 4 LCD Application and Parameter Setting

4.1 Explanation of Parameters

	Capacity of battery pack after being fully charged; Usually, it is initially configured to nominal capacity
Total capacity	of battery pack.
	Currently surplus ampere-hours of battery pack; it is set according to parameters provided by battery
Surplus capacity	manufacturer.
Maximum	
charging voltage	Set maximum allowed charging voltage of charger through CAN communication.
Maximum	
charging current	Set maximum allowed charging current of charger through CAN communication.
Over-charge	Set the maximum veltage threshold value that single call better uses raise during charging. Correctly
protection	Set the maximum voltage threshold value that single cell battery can raise during charging. Carry out
voltage	over-charge protection to battery and alarm when it is more than this value.
Over-charge	Set to cancel the voltage threshold value of overcharge protection, i.e. to cancel over-charge
protection	protection and alarm when the maximum voltage of single cell battery drops to the value lower than
release	threshold value.
Under-voltage	Set threshold value of alarm for low voltage of battery single cell, which is used to prompt low power
alarm voltage	of battery.
Under-voltage	Set to cancel the voltage threshold value of under-voltage alarm, i.e. to cancel under-voltage alarm
alarm release	when the minimum voltage of single cell battery recovers to the value more than this parameter.
Over-discharge	Set the minimum voltage threshold that battery can drop to during discharging. Carry out
protection	over-discharge protection to battery when the voltage is lower than the value.
voltage	
Over-discharge	Set to cancel the parameter of battery over-discharge protection, i.e. to cancel battery over-discharge
protection	protection when the minimum voltage of single cell battery recovers to the value more than this
release	parameter.
Over-temperature	Set allowed maximum operating temperature of battery pack. Carry out battery over-temperature
protection	
temperature	protection and alarm when the temperature is higher than the value.
Over-temperature	Set the temperature threshold of over-temperature alarm release, i.e. to cancel over-temperature
protection	protection and alarm when the maximum temperature of battery drops to the value lower than the
release	threshold.

4.2 Main Interface of LCD

Display alarm information

Figure 4-1 Main Interface of Terminal User

Remarks: It displays in gray when alarm information is normal; it displays in red and flashes when there is alarm.

(2) For advanced user

Remarks: at this moment, click "battery information" to pop up the window user interface, statistical information and configuration information are newly interface.

Compared with terminal increased in senior user

4.3 User Permission

The touch screen has the function to set user permission. The terminal user can only browse general information. For senior user, statistical information and configuration information of battery are increased. When the touch screen is powered on, the default user is terminal user.

Steps for modification of user permission

- Step 1: click "Menu" to pop up the window as shown in figure 4.3.1.
- > Step 2: click "User Information" to pop up the window as shown in figure 4.3.2.
- Step 3: click "Modify" and enter password to change user name.

If the entered password is 1111, the user is terminal user. If the entered password is 5555, the user is senior user.

> Step 4: click "Return". The main interface can alter automatically according to user name.

Figure 4-4 User Information

4.3 User Permission

The touch screen has the function to set user permission. The terminal user can only browse general information. For senior user, statistical information and configuration information of battery are increased. When the touch screen is powered on, the default user is terminal user.

Steps for modification of user permission

- Step 1: click "Menu" to pop up the window as shown in figure 4.3.1.
- > Step 2: click "User Information" to pop up the window as shown in figure 4.3.2.
- Step 3: click "Modify" and enter password to change user name.

If the entered password is 1111, the user is terminal user. If the entered password is 5555, the user is senior user.

> Step 4: click "Return". The main interface can alter automatically according to user name.

4.4 Display of Battery Single Cell Information Figure 4-4 User Information

The system will enter the corresponding interface after clicking "Single Cell Information", as shown in the following figure 4-5.

Figure 4-5 Single Cell Information

Remarks: above figure gives the corresponding information of modules 1 and 2. Each module includes the information of 16 single cell voltages and 3 module temperatures.

4.5 Di splay of Charger Information

The system enters into corresponding charger interface after clicking "Charger".

Charger		
State		Off-line
Operation		On
Hardware		Normal
Input Volt		Normal
Temperature		Normal
Output Curr	888.8	A
Autput Volt	888.8	v

Remarks: the interface displays some information of charger. Receive the corresponding messages of charger through CAN communication and display them on the touch screen.

Explanation of parameters

- Online status: communication status of charger; it displays online when charger is communicating with BMS; otherwise, it is offline; the default status is offline.
- Starting status: indicate whether the charger has started to charge; it indicates starting after starting to charge; otherwise, it is stopping; the default status is normal.
- Hardware fault: malfunction of charger itself, default to normal.
- Input voltage: indicate the status of charger input voltage, default to normal.
- Temperature status: indicate the temperature status of charger, default to normal.
- Output current: indicate present charging current of charger.
- Output current: indicate present charging voltage of charger.

4.6 Display of Battery Statistical Information

The information is mainly used for analysis of battery performance and application status.

- Step 1: change user information to senior user.
- Step 2: click "Battery Information".
- Step 3: click "Statistical Information".

Statistical information						
in cell voltage	Vit	8. 888 V	Stave W)	81	Sec. (ef	88
ai cell voltage	Wells,	8. 888 V	Slare No.	81	(internal second	88
Bact vol Lage di Harance					8383	шX
difference					888	C.
Accueilates charging time					88888	н
Accumulated the seture of the					81810	H
Barging and					88888	×.

4.7 Configuration Interface

In order to evaluate all parameters of battery accurately, it is necessary to re-configure BMS before its initial running. The configurable content includes: total capacity of battery pack (nominal capacity), current surplus capacity of battery pack, maximum charging voltage, maximum charging current, over-charge voltage of single cell battery, over-charge release voltage of single cell battery, under-voltage protection voltage of single cell battery, under-voltage release voltage of single cell battery, over-discharge protection voltage of single cell battery, over-discharge release voltage of single cell battery, over-temperature protection temperature and over-temperature release temperature.

Steps of parameter configuration:

- Step 1: change user information to senior user.
- Step 2: click "Configure Information" of main interface. The system displays a configuration interface as shown in figure 4.7.1.
- Step 3: click "Read" to read the default configuration parameters of host. The system doesn't support automatic reading of configuration parameter. Therefore, it is required to click "Read" after entering the configuration interface.
- Step 4: click the corresponding parameter column to modify the corresponding parameter.
- Step 5: Click "Write in" to enter the password 8888. Configuration parameters are related to the running status of system. Therefore, they cannot be altered at will. After clicking, if you didn't operate step 3 previously, the dialog box for reading will pop up. If you have operated step 3, system will pop up a dialog box for write-in confirmation. The configuration parameter can be read before writing in.
- Step 6: When writing into the dialog box, click "Write in" and wait for 5 seconds around. It means that the setting operation has been finished when the COM indicator light flashes normally. If the indicator displays abnormally, you can click "Write in" again and then click "Return".
| | Config | | | | |
|-------------------------|-------------|--------|-------------|---------|--------------------------|
| | Total Cap | 999 AB | Adjournment | 999.9 A | |
| | Charge Volt | 999 AB | Charge Car | 99.9 A | |
| | 0.7 | 9999 v | O.V.Bee | 9999 v | |
| | U.V. | 9999 v | U.V.free | 9999 v | |
| Deed | O.D | 9999 v | O.D.five | 9999 V | Deter |
| Read
configuration | от. III. | 999 C | OThe | 999 C | Return
to mai
menu |
| information
from BMS | | | | | menu |

Information to factory value keen configuration parameters is as follows:

- 1. over-charge voltage > over-charge release > under-voltage release > under-voltage voltage > over-discharge release > over-discharge protection
- 2. Over-temperature release < over-temperature protection
- 3. Surplus capacity < total capacity

Recover configuration parameters to default value:

- > Step 1: click the button "Restore Default". The dialog box to inquire whether confirm the restoration pops up.
- Step 2: Click "OK" in the popped-up dialog box. Then, the configuration information restores to default value.
- > Step 3: click "Write in" to write default value into BMS.

Chapter 5 Application of Upper Computer Software

5.1 BCU data show Upper Computer Software

5.1.1 Function of Upper Computer Software

- Communication with BCU through designated model CAN-USB converter
- Analyze the data information transmitted by all modules and then display voltage, temperature and configuration value and so on.
- Configure information for each module through upper computer
- Can request data automatically

5.1.2 Software Installation

- System requirement: all systems above WinXP (Vista or Win 7 is better)
- Software running: operate EXE file directly.

5.1.3 Application of BCU Upper Computer

BCU can be tested and configured independently through using upper computer software

1. Main interface

Fig. 5-1 System Login Form

Choose applicable communication (optional) according to communication protocol between BMS and upper computer

software

- Default value of equipment index number is "0"(appointed CAN-USB converter)
- Default value of CAN channel is "0" (appointed CAN-USB converter)
- Choose suitable CAN Baud rate according to communication protocol between BMS and upper computer software
- Choose the language
- Click "Yes" and enter BCU interface after connecting with BMS

Remark: It will show following information if BMS and upper computer software is not connected.

2. BCU Interface

Fig. 5-3 BCU Interface

BCU interface will display the systems' working condition information.

3.BMU Interface

a littery Marage	mand Links WIGSD			الغناق حا
UG 力高	in ale	ery Manag	ement Syst	em (BQU)
BCU	Monomer vn/tage			
BLV	01 : O and refe	02 : 000 my	85 : O THE erV	942 Billion mv
	05 : 🚺 mV	06 : 0	47 : 01 mt	08 : 01000 mv
	09 :	10 : 10 : mV	13 : 0	321 011 miv
	13) 13 m rv	14: Other and	55 : 0 mrV	18 : 1 mil
	Manamer temperature			
	71 (11)	12: 11:11:1 x	11: 11: 1	74 :

Fig. 5-4 BMU Interface

4. Configuration Information Interface

Battery Management System VI (10)			
刀语曲能	ttery Manag	gement System	r (BCU)
Sum total of EMU	Temperature service	Cathestee correct	
Turkel capacity: AH	Apare capacity:	AH Charge Carrent	
Over sharge	and a	Undervoltage E	ant a
Over discharge	mv.	Over temperature	
Protection release value			
Oversthørge release	anti-	Undervaltage release	mv.
OverStasharga reisease	mit .	Overtemperature release	ж
	Test		Corrflg

Fig. 5-5 Configuration Information Interface

- Enter configuration information interface and click "Read", it will display each parameter of system
- Input parameter if need any modification.
- Click "Configuration" and enter password (default password is 8888) ,then press "Enter" to confirm. (refer to following picture)

System will display the information of "configuration success" or "configuration failure".

Remark: If entering wrong password, it will display like following picture.

5.2.1 Function of Upper Computer Software

5.2 Function of BMU Configuration Upper Computer software

- Communicate with BMU,BCU, data storage module and leakage detecting module.
- Analysis data from modules, shown the voltage, temperature and configuration value etc.
- Configure information for BMU module through upper computer
- Can request data automatically

5.2.2 Software Installation

- System requirement: all systems above Win98
- Software running: operate EXE file directly.

5.2.3 Application of Upper Computer

BMU can be tested and configured independently through using upper computer software

1. Main interface

🗆 JA KURAE : 💶 🗯 🗯	- 电法取用: 🛛 🗯	🔲 电压绞电道: 🛛 🔮	1
対連連束	短期电压	起始电压	2017-1241
- #PA: • • •	🗆 (R\$P\$E : 🛛 🛛 🗮	🗆 (R940) : 🛛 🖉	□ 开启温度: ● 🛊
🗌 ###@ = 🛛 🔹	🗌 #\$25@ i 🛛 🔶 🚔	- NOB - • =	二天治温度 () 🛊
历史数据	大王电压		2U81291
🗆 最高温度 (💦 🔹 🛊	🗌 (R)^ 🖾 i 🛛 🖉		日月白湯泉 (● 🛊
🗋 最低温度 : 💦 🛔	🗌 #81512 : 🛛 🖉 🚍		🗆 未用温度 : 🔹 🛊
45508			
🗆 AD REGIER 1 💿 🚊	#845: •=	□ 并相压策 : 0 🚔	🗌 X2484.11 🗧 🔮
□ 禁能最大压量:	• 0		

Fig 5-6 Main interface of BMU configuration parameters

"BMU configuration "the default configuration parameters in the list below :

1	BMU address	Configuration according to the practical situation.		
		Scope:1~255		
2	Battery number	Configuration according to the practical situation. Scope:1~16 strings		
3	Voltage calibrati value	on Configuration according to the practical situation. Scope:-5000~5000mV		
4	0 T	Protection value : 60°C		
4	Over Temperature value	Release value:40°C		
5	Over charging voltage	Protection value : 3850mV		
5	Over charging voltage	Release value:3400mV		
6	Over discharge voltage	Protection value : 2600mV		
0	Over discharge vollage	Release value:2800mV		
		Starting temperature : Configuration according to the		
7	Heating control	practical situation		
		Off temperature :Configuration according to the practical situation		
		Maximum temperature: Factory configuration is25°C		
	B History data	Minimum temperature : Factory configuration is 25°C		
9	Lindon voltago voluo	Protection value : 2900mV		
9	Undervoltage value	Release value:3000mV		
10	Fan control	Starting temperature:60°C		
10	Fan control	Off temperature:40°C		
		Balancing ways:2		
		Starting voltage : 2800mV		
1	1 Battery balancing	Starting differential pressure : 10mV		
		Over temperature : 60°C		
		Disable maximum differential pressure : 800mV		

Fig5-7 Upper computer software configuration display interface 3

- 2. Configuration parameters method
- Operation PC software. Enter the PC connection interface 1, connect USB-CAN translator.

■ 34:系机配置指序	- X
	3.8 C)
LIGOO	分体 - 共和心)
电动汽车如此豪近	朝安 1005 (1)
新規所有: C) 2001 安置力規模設備的中有限公司 同誌 (100): 1 http://www.lizes.co	#2± (c)

Fig 5-8 PC connection interface 1

 Click "Connect(C)" to enter equipment connection interface 2(Fig 5-9). Select the corresponding device number, the channel number and baud rate, click "connection (O)".

治参注报				-	х
设备原注					h
改善号 ① :	0		¥		
連進号 (4):	0		¥		
維持率(10):	250	¥	Bys		
	连接	10	取消	¢	5

Fig 5-9 Equipment connection interface 2

After entering the equipment connection interface3, slect"FT-BMU(S)", to enter PC configuration display interface1.

an 14.1系统数量程序	- X
	NH O
LIGOO	分林 - 共杭(2)
电动汽车如此亲近	(1) SMIC (2)
厳犯所有: (2) 2011 安数力高新設備法水有得公司 円輪 (5型) 1.http://www.ligne.co	北田の

Fig5-10 Upper computer software connection interface 3

Parameter setting

Click "Parameter setting(O)" enter parameter settings interface, slect "BMU setting", click "Loading parameters (L)" to lead parameters configuration files or fill in the data need configuration and selected in front of the check box, then click "setting(S)".

🗋 从机地址: 🔰 🚔	🗆 4681 : 🛛 17 🛊	🗆 45046 : 🛛 🔹	
1188R	1154E	12MAE	2070290
- @PB: 02	🗌 (R)*@ : 🛛 4300 🖀	🗌 (R)*@ : 🛛 260 😭	- #Bāt: • 2
□料田道: ●章	🗌 🖬 🖽 🗄 🔛 😭	🗌 MER 🗄 : 🛛 2000 🛫	□ AR&t: ■ 2
历史歌舞	火压电压		RAISN
🗆 🖗 A A A T : 🔍 💼	🗆 (R)P 🖬 : 🛛 🗰 🖀		- #Bilt: • 1
🗆 単成晶度 👘 🔍 🛢	- NOG I 1000 #		二并约基度 第章
1000			
🗆 約歲錄歌 🛛 🕴 🛔	🗆 // B 46 E 🛛 🚿 🚊	TREE 5	🗆 15##R 🕢 🖬 🗮
□ 解胎最大压度:	800 2		

Fig 5-11 Parameter setting interface

You can also click "Getting parameter(G)" to get all the parameters of BMU and adjust according to requirement. When batch configuration, click "Save parameters(A)" to create files like "BMU_03_2011_09_01_02_44.lgpara". Then load again.

After finishing the configuration, click "Getting parameter(G)" or back to "BMU parameter" clicking "Read(R)" to check the modified parameter.

After finishing the configuration, click "Exit(E)" to back to main interface. Click "Getting(G)" to get the parameters of BMU. Select "automatic acquisition" then setting the interval time, click "Getting(G)" again, you could periodically obtain information from BMU.

ARARIE :	4388 II :	电压校准值:	
社会主义	11日电压	近期電圧	2011/241
@P@:	RPB:	(89%)	F84t:
N2:02 :	N223:	#### :	关闭重度:
历史影響	254E		AREN
景彩温度:	RP41:		米形道度:
最乐温度:	¥809.02 :		共利温度:
电运动度			
10歳8日数1	开启地区:	开启压着:	15番車夜:
禁能最大臣服:			

S 5-12 Upper computer software configuration display interface 2

5.3 LDM Upper Computer

Leakage detecting module can be independently testing by upper computer. Procedure is as follows:

- > Step 1:Positive and negative of LDM respectively connect the battery total positive and negative.
- > Step 2: Connect LDM and PC through USB-RS485 adapter.
- > Step 3:Power supply for LDM is DC12V or DC24V $_{\circ}$
- Step 4:Open upper computer software(fig 5-13 Initialize setting),"端口"slect"COM1"(free configuration according to the upper machine interface)."波特率"选择"9600", "校验位"选择"None", "数据位"选择"8", "停止位"选择"1", 然后单击界面中"打开串口"。

串口初始化				
病口	C0#1	۰		
波特率	9600	•		
校验位	None			
数据位	8			
停止位	1	۰		
۲	打开串口	1		
F	ig 5-13 Initializ	e setting		

Step 5 : After connecting the power line, click "read", to read the display value.

值息采集		
正极绝缘电阻	1:4500 kR	
负极绝缘电阻	3345 kΩ	
息压:	\$0000 Nr	
工作代码:		
故陳代码:	2	

Fig 5-14 Parameters to check

Insulation monitoring the condition of normal detection:

- Positive insulation resistance:>1MΩ_o
- Negative insulation resistance:>1MΩ_o
- Total voltage : effective when above 100V
- Fault code : 00 means normal operation;01 means offline state;02 means leakage state.
- Working code : 00.

Chapter 6 Fault Diagnosis

6.1 List of Fault and Alarm Information

EV-FT-1 BMS has perfect management functions, which can prolong the service life of battery. Some fault tips may appear during application. Please carry out analysis, judge causes and eliminate fault according to the following table.

(If system damaged or meet problems that cannot be solved, please contact the technical support center (400-0551-306) of our company to obtain solutions.)

he working voltage is within range. r system. rofessional technicist. r setting of battery ler or stop supplying power cation interface. Ind discharging and resta rt
er or stop supplying power cation interface.
nd discharging and resta rt
ture recovery.
. Charge battery or correct configuration anually.
he power interface of LCD is
loose or has fallen off.
tage detection cable n good stations.
emperature sensor.
ect voltage collection caple.
tion and re-install current
current sensor is connected
on of configuration parameters".
e current sensor is origin al configuration of system. he host has supplied pov er.
the power cord between host nected correctly.
maximum charging current.
SD card write-in protection.

Remark: for detailed fault icons of LCD, please refer to LCD introduction part.

6.2 Procedure of Fault Diagnosis

Chapter 7 Daily Maintenance

Factors as service environment (such as temperature, humidity, dust and interference and so on), aging and abrasion of internal components and so on will increase the fault occurrence rate of system. It is necessary to carry out daily maintenance to decrease fault occurrence rate and prolong system service life.

Caution:

• Only trained professional operators can disassemble and replace the internal components.

- It is necessary to switch off the power supply before checking and maintaining.
- Prevent metal or other matters being left in system. Otherwise, system may be short circuited and damaged

Daily maintenance	 In order to improve the function realization and prolong the service life of system, it is necessary to keep good installation environment. Generally, it is required to avoid direct high light for long time or other radiation and prevent water, other fluid, dust or dirt and so on from entering.
	Check input voltage and input current with voltmeter and ampere meter to see whether they are within normal range. You can refer to description of system parameters. The output voltage and output current also can be checked with BCU and BMU modules voltmeter and ampere meter to see whether they are within rated range. It is
	possible to perform intuitive judgment through touching, smelling and visual inspection to prevent these factors influencing its functions.
	 LCD It is necessary to clean LCD frequently to keep it clean. Don't crash or abrade it. Otherwise, the sight line will be interfered, which will cause incorrect judgment.
Component replacement	 Different components have different service life. The service life of components is influenced by environment and application conditions. Keeping good operating environment is good for the improvement of component service life. Wires of various plugs (e.g. air plug), PIN connector and serial port easily fall off from their welding spot, causing open circuit. Please replace them in time if there is any damage. It is necessary to cut off power supply before replacement. DC-DC is easily short circuited or damaged under high voltage. Please replace it in time if there is any damage. It is necessary to cut off power supply before replacement. Various wires are easily of short circuit or open circuit due to vehicle vibration, aging or falling off of plug from welding point. Please replace them in time if there is any damage. It is necessary to cut off power supply before replacement.
Regular maintenance	 Check whether any connector assembly is loose. If yes, please fix it. Check whether any cable is worn. If yes, replace it in time. Check the communication between BCU and BMU. If the communication is abnormal, please check it by yourself according to appendix. If the problem still cannot be solved, please contact technical support center of our company in time. Check module collection accuracy; mainly refer to voltage accuracy and temperature accuracy. It is necessary to check whether the voltage is within normal range with special instrument when measuring voltage. Also, use special instrument to detect whether the battery temperature is consistent with the value displaying on console. Please check it by yourself according to appendix if there is any abnormality. If the problem still cannot be solved, please contact technical support center of our company in time. Regularly check whether LCD display is normal. Please check it by yourself according to appendik if there is any abnormality. If the problem still cannot be solved, please contact technical support center of our company in time. Regularly check whether any module is loose. If yes, please tighten it in time.